Page 27 - ITUJournal Future and evolving technologies Volume 2 (2021), Issue 1
P. 27

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 1




          [10] E. Fountoulakis, T. Charalambous, N. Nomikos, A.  [22] L. Tassiulas and A. Ephremides, “Stability properties
             Ephremides, N. Pappas, “Information Freshness and     of constrained queueing systems and scheduling poli‑
             Packet Drop Rate Interplay in a Two‑User Multi‑       cies for maximum throughput in multihop radio net‑
             Access Channel”, to appear, in Proc. IEEE ITW, 2021.  works,” in Proc. IEEE CDC, pp. 2130–2132, 1990.
          [11] E. Fountoulakis, N. Pappas, Q. Liao, A. Ephremides,  [23] B. Li, R. Li, and A. Eryilmaz, “Throughput‑optimal
             and V. Angelakis, “Dynamic power control for pack‑    scheduling design with regular service guarantees in
             ets with deadlines,” in IEEE Proc. GLOBECOM, pp. 1–6,  wireless networks,” IEEE/ACM Trans. Net., vol. 23, no.
             2018.                                                 5, pp. 1542–1552, 2014.

          [12] M. Choi, J. Kim, and J. Moon, “Dynamic power allo‑  [24] X. Lan, Y. Chen, and L. Cai, “Throughput‑optimal H‑
             cation and user scheduling for power‑ef icient and    QMW scheduling for hybrid wireless networks with
             delay‑constrained multiple access networks,” IEEE     persistent and dynamic  lows,” IEEE Trans. Wireless
             Trans. Wireless Commun, vol. 18, no. 10, pp. 4846–    Commun., vol. 19, no. 2, pp. 1182– 1195, 2019.
             4858, 2019.
                                                               [25] B. Sadiq and G. De Veciana, “Throughput optimal‑
          [13] N. Salodkar, A. Bhorkar, A. Karandikar, and V. S.   ity of delay‑driven maxweight scheduler for a wire‑
             Borkar, “An on‑line learning algorithm for energy     less system with  low dynamics,” Allerton, pp. 1097–
             ef icient delay constrained scheduling over a fading  1102, 2009.
             channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 4,
             pp. 732– 742, May 2008.                           [26] L. You, Q. Liao, N. Pappas, and D. Yuan, “Resource op‑
                                                                   timization with  lexible numerology and frame struc‑
          [14] M. Goyal, A. Kumar, and V. Sharma, “Power con‑      ture for heterogeneous services,” IEEE Commun. Let‑
             strained and delay optimal policies for scheduling    ters, vol. 22, no. 12, pp. 2579–2582, 2018.
             transmission over a fading channel,” in Proc. IEEE IN‑
             FOCOM, vol. 1, May 2003, pp. 311–320.             [27] E. Fountoulakis, N. Pappas, Q. Liao, V. Suryaprakash,
                                                                   and D. Yuan, “An examination of the bene its of scal‑
          [15] A. Dua and N. Bambos, “Downlink wireless packet     able TTI for heterogeneous traf ic management in 5G
             scheduling with deadlines,” IEEE Trans. Mobile Com‑   networks,” in Proc. WiOpt, May 2017, pp. 1–6.
             put., vol. 6, no. 12, pp. 1410–1425, Dec. 2007.
                                                               [28] A. Anand, G. De Veciana, and S. Shakkottai, “Joint
          [16] A. Fu, E. Modiano, and J. N. Tsitsiklis, “Optimal trans‑  scheduling of urllc and embb traf ic in 5G wireless
             mission scheduling over a fading channel with energy  networks,” IEEE/ACM Trans. Net., vol. 28, no. 2, pp.
             and deadline constraints,” IEEE Trans. Wireless Com‑  477–490, 2020.
             mun., vol. 5, no. 3, pp. 630–641, Mar. 2006.
                                                               [29] A. Anand and G. de Veciana, “Resource allocation and
          [17] A. Ewaisha and C. Tepedelenlioglu, “Power control   harq optimization for urllc traf ic in 5G wireless net‑
             and scheduling under hard deadline constraints for    works,” IEEE J. Sel. Areas Commun., vol. 36, no. 11, pp.
             on‑off fading channels,” in Proc. IEEE WCNC, March    2411–2421, 2018.
             2017, pp. 1–6.
                                                               [30] A. Karimi, K. I. Pedersen, and P. Mogensen, “Low‑
          [18] A. E. Ewaisha and C. Tepedelenlioglu, “Optimal      complexity centralized multi‑cell radio resource allo‑
             power control and scheduling for real‑time and non‑   cation for 5g urllc,” in Proc. IEEE WCNC, 2020, pp. 1–6.
             real‑time data,” IEEE Trans. Vehic. Tech, vol. 67, no. 3,
             pp. 2727–2740, 2017.                              [31] N. B. Khalifa, V. Angilella, M. Assaad, and M. Debbah,
                                                                   “Lowcomplexity channel allocation scheme for urllc
          [19] S. ElAzzouni, E. Ekici, and N. Shroff, “Is deadline  traf ic,” IEEE Trans. Commun., 2020.
             oblivious scheduling ef icient for controlling real‑
             time traf ic in cellular downlink systems?” in Proc.  [32] A. Avranas, M. Kountouris, and P. Ciblat, “Through‑
             IEEE INFOCOM, pp. 49–58, 2020.                        put maximization and ir‑harq optimization for urllc
                                                                   traf ic in 5G systems,” in Proc. IEEE ICC , 2019, pp. 1–
          [20] K. S. Kim, C.‑P. Li, I. Kadota, and E. Modiano, “Op‑  6.
             timal scheduling of real‑time traf ic in wireless net‑
             works with delayed feedback,” Allerton, pp. 1143–  [33] A. Destounis, G. S. Paschos, J. Arnau, and M. Koun‑
             1149, 2015.                                           touris, “Scheduling urllc users with reliable latency
                                                                   guarantees,” in Proc. WiOpt, 2018, pp. 1–8.
          [21] M. J. Neely and S. Supittayapornpong, “Dynamic
             Markov decision policies for delay constrained wire‑  [34] M. J. Neely, Stochastic Network Optimization with
             less scheduling,” IEEE Trans. Automatic Control, vol.  Application to Communication and Queueing Sys‑
             58, no. 8, pp. 1948–1961, 2013.                       tems. Morgan & Claypool, 2010.





                                             © International Telecommunication Union, 2021                    11
   22   23   24   25   26   27   28   29   30   31   32