Method for determining the impedance to earth of earthing systems |
|
Telecommunication systems are vulnerable to the earth potential rise (EPR) that can occur in power systems, and they are also vulnerable to the transfer of EPR outside the zone of influence (ZOI), which should also be considered. A quick estimate of the earth potential rise is obtained from the product (Ie × Re) of the current Ie flowing through an earth electrode and the resistance Re to earth of that earth electrode.
In this Recommendation methods of different complexity are given for measuring the resistance to earth of earth electrodes or even complex earthing systems. The described methods provide simple methods and more sophisticated measurements through the use of computer-based earthing multimeters. Guidance is given on the relevance of each of the different methods for different purposes.
Techniques are also given for the elimination of interference and disturbance voltages for earthing measurements.
In practice it may be necessary to determine or at least estimate the impedance to earth of a power system installation already in the design phase. For these purposes, techniques of calculating the resistance/impedance to earth of isolated, as well as interconnected, earthing systems are also included.
|
|
Citation: |
https://handle.itu.int/11.1002/1000/12672 |
Series title: |
K series: Protection against interference |
Approval date: |
2015-11-29 |
Provisional name: | K.hvps2 |
Approval process: | AAP |
Status: |
In force |
Maintenance responsibility: |
ITU-T Study Group 5 |
Further details: |
Patent statement(s)
Development history
|
|
|
Ed. |
ITU-T Recommendation |
Status |
Summary |
Table of Contents |
Download |
1
|
K.107 (11/2015)
|
In force
|
here
|
here
|
here
|
|
ITU-T Supplement
|
Title
|
Status
|
Summary
|
Table of contents
|
Download
|
K Suppl. 3 (10/2015)
|
ITU-T K.20, K.21, K.45, K.82 – Additional criteria to protect telecommunication cabling during a power cross event
|
In force
|
here
|
here
|
here
|
K Suppl. 8 (11/2017)
|
Resistibility analysis of 5G systems
|
In force
|
here
|
here
|
here
|
K Suppl. 9 (05/2019)
|
5G technology and human exposure to radiofrequency electromagnetic fields
|
In force
|
here
|
here
|
here
|
K Suppl. 10 (11/2017)
|
Analysis of electromagnetic compatibility aspects and definition of requirements for 5G mobile systems
|
In force
|
here
|
here
|
here
|
K Suppl. 13 (12/2021)
|
Radiofrequency electromagnetic field (RF-EMF) exposure levels from mobile and portable devices during different conditions of use
|
In force
|
here
|
here
|
here
|
K Suppl. 14 (09/2019)
|
The impact of RF-EMF exposure limits stricter than the ICNIRP or IEEE guidelines on 4G and 5G mobile network deployment
|
In force
|
here
|
here
|
here
|
K Suppl. 16 (10/2022)
|
Electromagnetic field compliance assessments for 5G wireless networks
|
In force
|
here
|
here
|
here
|
K Suppl. 19 (09/2019)
|
Electromagnetic field (EMF) strength inside underground railway trains
|
In force
|
here
|
here
|
here
|
K Suppl. 29 (07/2022)
|
Electromagnetic field strength inside and outside of electric vehicles using wireless power transfer technology
|
In force
|
here
|
here
|
here
|
Title |
Approved on |
Download |
Mitigation measures for telecommunication installations – Chapter 10
|
2006
|
here
|
Mitigation measures for telecommunication installations
|
2004
|
here
|
Earthing and bonding
|
2003
|
here
|
Guide to the use of ITU-T Publications produced by Study Group 5 aimed at achieving Electromagnetic Compatibility and Safety
|
2002
|
here
|
Earthing of telecommunication installations
|
1976
|
here
|
|