ITU's 160 anniversary

Committed to connecting the world

Articles

Article 1 - Dynamic power control for time-critical networking with heterogeneous traffic
2021  

Future wireless networks will be characterized by heterogeneous traffic requirements. Examples can be low-latency or minimum-througput requirements. Therefore, the network has to adjust to different needs. Usually, users with low-latency requirements have to deliver their demand within a specific time frame, i.e., before a deadline, and they coexist with throughput oriented users. In addition, mobile devices have a limited-power budget and therefore, a power-efficient scheduling scheme is required by the network. In this work, we cast a stochastic network optimization problem for minimizing the packet drop rate while guaranteeing a minimum throughput and taking into account the limited-power capabilities of the users. We apply tools from Lyapunov optimization theory in order to provide an algorithm, named Dynamic Power Control (DPC) algorithm, that solves the formulated problem in real time. It is proved that the DPC algorithm gives a solution arbitrarily close to the optimal one. Simulation results show that our algorithm outperforms the baseline Largest-Debt-First (LDF) algorithm for short deadlines and multiple users.
Available inelectronic file  
Other editions:   2021   2021   2021   2021   2021   2021   2021  
 
Volume 1 (2020), Issue 1
2020  

Infrastructure sharing for mobile networks has been a prolific research topic for more than three decades now. The key driver for Mobile Network Operators to share their network infrastructure is cost reduction. Spectrum sharing is often studied alongside infrastructure sharing although on its own it is a vast research topic outside the scope of this survey. Instead, in this survey we aim to provide a complete picture of infrastructure sharing both over time and in terms of research branches that have stemmed from it such as performance evaluation, resource management etc. We also put an emphasis on the relation between infrastructure sharing and the decoupling of infrastructure from services, wireless network virtualization and multi-tenancy in 5G networks. Such a relation reflects the evolution of infrastructure sharing over time and how it has become a commercial reality in the context of 5G.
Available inelectronic file  
Other editions:   2020   2020   2020   2020   2020   2020   2020   2020   2020