CONTENTS

Annex 1
�1���� Introduction
�2���� Interference propagation mechanisms
�3���� Clear-air interference prediction
������� 3.1���� General comments
������� 3.2���� Deriving a prediction
����������������� 3.2.1���� Outline of the procedure
Step 1: Input data
Step 2: Selecting average year or worst-month prediction
Step 3: Radiometeorological data
Large bodies of inland water
Large inland lake or wet-land areas
Effective Earth radius
Step 4: Path profile analysis
Step 5: Calculation of propagation predictions
�4���� Clear-air propagation models
������� 4.1���� General
������� 4.2���� Line-of-sight propagation (including short-term effects)
������� 4.3���� Diffraction
������� 4.4���� Tropospheric scatter (Notes 1 and 2)
������� 4.5���� Ducting/layer reflection
������� 4.6���� Additional clutter losses
����������������� 4.6.1���� General
����������������� 4.6.2���� Clutter categories
����������������� 4.6.3���� The height-gain model
����������������� 4.6.4���� Method of application
������� 4.7���� The overall prediction
����������������� 4.7.1���� Trans-horizon paths
������� 4.8���� Calculation of transmission loss
�5���� Hydrometeor-scatter interference prediction
������� 5.1���� Introduction
������� 5.2���� Input parameters
������� 5.3���� The step-by-step procedure
Step 1: Determination of meteorological parameters
Step 2: Conversion of geometrical parameters to plane-Earth representation
Step 3: Determination of link geometry
Step 4: Determination of geometry for antenna gains
Step 6: Attenuation outside the rain cell
Step 7: Numerical integration of the scatter transfer function
Numerical integration: There are many methods available for numerical integration, and numerous mathematical software packages include intrinsic integration functions which can be exploited effectively. Where the user wishes to develop a dedicated package in other programming languages, methods based on iterative bisection techniques have proved effective. One such technique is the Romberg method, which is a higher-order variant of the basic trapezoidal (i.e. Simpson�s) rule for integration by successive bisections of the integration intervals.
The extended trapezoidal rule
Step 8: Determination of other loss factors
Step 9: Determination of the cumulative distribution of transmission loss
Appendix 1 to Annex 1� Radio-meteorological data required for the clear-air prediction procedure
�1���� Introduction
�2�� ��Maps of vertical variation of radio refractivity data
�3���� Map of surface refractivity, N0
�4���� Implementation of maps in computer database form
Appendix 2 to Annex 1� Path profile analysis
�1���� Introduction
�2���� Construction of path profile
�3� ���Path length
�4���� Path classification
������� 4.1���� Classification Step 1: Test for a trans-horizon path
������� 4.2���� Step 2:  Test for line-of-sight with sub-path diffraction (i.e. without full first Fresnel zone clearance)
�5���� Derivation of parameters from the path profile
������� 5.1���� Trans-horizon paths
����������������� 5.1.1���� Interfering antenna horizon elevation angle, θt
����������������� 5.1.2���� Interfering antenna horizon distance, dlt
����������������� 5.1.3���� Interfered-with antenna horizon elevation angle, θr
����������������� 5.1.4���� Interfered-with antenna horizon distance, dlr
����������������� 5.1.5���� Angular distance θ (mrad)
����������������� 5.1.6���� �Smooth-Earth� model and effective antenna heights
Appendix 3 to Annex 1� An approximation to the inverse cumulative normal distribution function for x  0.5