CONTENTS

Policy on Intellectual Property Right (IPR)
Annex� Wide-range propagation model� Description of the calculation method
�1���� Introduction
������� 1.1���� Applicability
������� 1.2���� Reciprocity, and the designation of terminals
������� 1.3��� �Iteration
������� 1.4���� Organization of the Recommendation
������� 1.5���� Style of description
�2���� Inputs
������� 2.1���� Terrain profile
������� 2.2���� Other inputs
������� 2.3���� Constants
������� 2.4���� Integral digital products
�3���� Preliminary calculations
������� 3.1���� Limited percentage times
������� 3.2���� Path length, intermediate points, and fraction over sea
������� 3.3���� Antenna altitudes and path inclination
������� 3.4���� Climatic parameters
����������������� 3.4.1���� Refractivity in the lowest 1 km
����������������� 3.4.2���� Refractivity in the lowest 65 m
����������������� 3.4.3���� Precipitation parameters
������� 3.5���� Effective Earth-radius geometry
������� 3.6���� Wavelength
������� 3.7���� Path classification and terminal horizon parameters
Case 1. Path is LoS
Case 2. Path is NLoS
Continue for both cases
������� 3.8���� Effective heights and path roughness parameter
������� 3.9���� Tropospheric-scatter path segments
������ 3.10���� Gaseous absorption on surface paths
������ 3.11���� Free-space basic transmission loss
������ 3.12���� Knife-edge diffraction loss
�4���� Obtaining predictions for the principal sub-models
������� 4.1���� Sub-model 1. Normal propagation close to the surface of the Earth
������� 4.2���� Sub-model 2. Anomalous propagation
������� 4.3���� Sub-model 3. Troposcatter propagation
������� 4.4���� Sub-model 4. Sporadic-E
�5���� Combining sub-model results
������� 5.1���� Combining sub-models 1 and 2
5.2��������� Combining sub-models 1 + 2, 3 and 4
5.3��������� Combining sub-models within a Monte-Carlo simulator
Attachment A� Diffraction loss
A.1��������� Introduction
A.2��������� Spherical-Earth diffraction loss
A.3��������� First-term spherical-Earth diffraction loss
Start of calculation to be performed twice
A.4��������� Bullington diffraction loss for actual profile
Case 1. Path is LoS for effective Earth curvature not exceeded for p% time
Case 2. Path is NLoS for effective Earth curvature not exceeded for p% time
A.5��������� Bullington diffraction loss for a notional smooth profile
Case 1. Path is LoS for effective Earth radius exceeded for p% time
Case 2. Path is NLoS for effective Earth radius exceeded for p% time
Attachment B� Clear-air enhancements and fading
B.1��������� Introduction
B.2��������� Characterize multi-path activity
For LoS path:
For NLoS path:
B.3��������� Calculation of the notional zero-fade annual percentage time
B.4��������� Percentage time a given clear-air fade level is exceeded on a surface path
B.5��������� Percentage time a given clear-air fade level is exceeded on a troposcatter path
Attachment C� Precipitation fading
C.1��������� Introduction
C.2��������� Preliminary calculations
C.3��������� Percentage time a given precipitation fade level is exceeded
C.4��������� Melting-layer model
C.5��������� Path-averaged multiplier
Start of calculation for each slice index:
Attachment D� Anomalous/layer-reflection model
D.1�������� Characterize the radio-climatic zones dominating the path
Large bodies of inland water
Large inland lake or wet-land areas
D.2�������� Point incidence of ducting
D.3�������� Site-shielding losses with respect to the anomalous propagation mechanism
D.4�������� Over-sea surface duct coupling corrections
D.5�������� Total coupling loss to the anomalous propagation mechanism
D.6�������� Angular-distance dependent loss
D.7�������� Distance and time-dependent loss
D.8�������� Basic transmission loss associated with ducting
Attachment E� Troposcatter
������� E.1���� Introduction
������� E.2���� Climatic classification
������� E.3���� Calculation of troposcatter basic transmission loss
Attachment F� Attenuation due to gaseous absorption
������� F.1���� Introduction
������� F.2���� Gaseous absorption for surface path
������� F.3���� Gaseous absorption for a troposcatter path
������� F.4���� Gaseous absorption for terminal/common-volume troposcatter path
������� F.5���� Water-vapour density in rain
������� F.6���� Specific sea-level attenuations
Attachment G� Sporadic-E propagation
������� G.1���� Derivation of foEs
������� G.2���� 1-hop propagation
������� G.3���� 2-hop propagation
������� G.4���� Basic transmission loss
Attachment H� Great-circle path calculations
������� H.1���� Introduction
������� H.2���� Path length and bearing
������� H.3���� Calculation of intermediate path point
Attachment I� Iterative procedure to invert a cumulative distribution function
������� I.1���� Introduction
������� I.2���� Iteration method
Stage 1: setting the search range
Stage 2: binary search
Attachment J� Structure of the wide-range propagation model
������� J.1���� Introduction
������� J.2���� Combining the sub-models