CONTENTS

Policy on Intellectual Property Right (IPR)
�1���� Introduction
������� 1.1���� Applicability
������� 1.2���� Reciprocity, and the designation of terminals
������� 1.3���� Iteration
������� 1.4���� Organization of the Recommendation
������� 1.5�� ��Style of description
�2���� Inputs
������� 2.1���� Terrain profile
������� 2.2���� Other inputs
������� 2.3���� Constants
������� 2.4���� Integral digital products
�3���� Preliminary calculations
������� 3.1���� Limited percentage times
������� 3.2���� Path length, intermediate points, and fraction over sea
������� 3.3���� Antenna altitudes and path inclination
������� 3.4���� Climatic parameters
����������������� 3.4.1���� Refractivity in the lowest 1 km
����������������� 3.4.2���� Refractivity in the lowest 65 m
����������������� 3.4.3���� Precipitation parameters
������� 3.5���� Effective Earth-radius geometry
������� 3.6���� Wavelength
������� 3.7���� Path classification and terminal horizon parameters
Case 1. Path is LoS
Case 2. Path is NLoS
Continue for both cases
������� 3.8���� Effective heights and path roughness parameter
������� 3.9���� Tropospheric-scatter path segments
������ 3.10���� Gaseous absorption on surface paths
������ 3.11���� Free-space basic transmission loss
������ 3.12���� Knife-edge diffraction loss
�4���� Obtaining predictions for the principal sub-models
������� 4.1���� Sub-model 1. Normal propagation close to the surface of the Earth
������� 4.2���� Sub-model 2. Anomalous propagation
������� 4.3���� Sub-model 3. Troposcatter propagation
������� 4.4���� Sub-model 4: Sporadic-E
�5���� Combining sub-model results
������� 5.1���� Combining sub-models 1 and 2
������� 5.2���� Combining sub-models 1 + 2, 3 and 4
������� 5.3���� Combining sub-models within a Monte-Carlo simulator
������� A.1���� Introduction
������� A.2���� Spherical-Earth diffraction loss
������� A.3���� First-term spherical-Earth diffraction loss
Start of calculation to be performed twice
������� A.4���� Bullington diffraction loss for actual profile
Case 1. Path is LoS for effective Earth curvature not exceeded for p% time
Case 2. Path is NLoS for effective Earth curvature not exceeded for p% time
������� A.5���� Bullington diffraction loss for a notional smooth profile
Case 1. Path is LoS for effective Earth radius exceeded for p% time
Case 2. Path is NLoS for effective Earth radius exceeded for p% time
������� B.1���� Introduction
������� B.2���� Characterize multi-path activity
For LoS path:
For NLoS path:
������� B.3���� Calculation of the notional zero-fade annual percentage time
������� B.4���� Percentage time a given clear-air fade level is exceeded on a surface path
������� B.5���� Percentage time a given clear-air fade level is exceeded on a troposcatter path
������� C.1���� Introduction
������ �C.2���� Preliminary calculations
������� C.3���� Percentage time a given precipitation fade level is exceeded
������� C.4���� Melting-layer model
������� C.5���� Path-averaged multiplier
������� D.1���� Characterize the radio-climatic zones dominating the path
Large bodies of inland water
Large inland lake or wet-land areas
������� D.2���� Point incidence of ducting
������� D.3���� Site-shielding losses with respect to the anomalous propagation mechanism
������� D.4���� Over-sea surface duct coupling corrections
������� D.5���� Total coupling loss to the anomalous propagation mechanism
������� D.6���� Angular-distance dependent loss
������� D.7���� Distance and time-dependent loss
������� D.8���� Basic transmission loss associated with ducting
������� E.1� ���Introduction
������� E.2���� Climatic classification
������� E.3���� Calculation of troposcatter basic transmission loss
������� F.1���� Introduction
������� F.2���� Gaseous absorption for surface path
������� F.3���� Gaseous absorption for a troposcatter path
������� F.4���� Gaseous absorption for terminal/common-volume troposcatter path
������� F.5���� Water-vapour density in rain
������� F.6���� Specific sea-level attenuations
������� G.1���� Derivation of foEs
������� G.2���� 1-hop propagation
����� ��G.3���� 2-hop propagation
������� G.4���� Basic transmission loss
������� H.1���� Introduction
������� H.2���� Path length and bearing
������� H.3���� Calculation of intermediate path point
������� I.1���� Introduction
������� I.2���� Iteration method
Stage 1: setting the search range
Stage 2: binary search
������� J.1���� Introduction
������� J.2���� Combining the sub-models