�1���� Introduction
������� 1.1���� Introduction and outline
������� 1.2���� Scope
������� 1.3���� Summary
�2���� Assumptions
������� 2.1���� Radio interface technologies considered
������� 2.2���� Interference scenarios
������� 2.3���� Involved cell layers
����������������� 2.3.1���� Frequency allocation
����������������� 2.3.2���� Deployment scenarios and BS position
������� 2.4���� Transmitter characteristics
����������������� 2.4.1���� Output power and antenna gain
����������������� 2.4.2���� Spectrum masks and adjacent channel leakage
ratio (ACLR) values
������� 2.5���� Receiver characteristics
������������� ����2.5.1���� Receiver noise
floor and antenna gain (FDD and TDD)
����������������� 2.5.2���� Receiver sensitivity
����������������� 2.5.3���� Adjacent channel selectivity (ACS)
specifications
������� 2.6���� Resulting adjacent channel interference ratios (ACIRs)
������� 2.7���� The practical gain of antennas of the
interfering station and the victim
Reference separation distance
������� 2.8���� Relation between acceptable BS degradation and additional interference
to the BS
����������������� 2.8.1���� Definitions and basic relations
����������������� 2.8.2���� Impact on the BS density for a given user
population
����������������� 2.8.3���� Impact on the system capacity with a given cell
plan
����������������� 2.8.4���� Acceptable levels of degradation
���� �������������2.8.5���� Reference
separation distances
�3���� Interference evaluation methodologies
������� 3.1���� Propagation models
Path loss model for vehicular test
environment
Path loss
model for outdoor to indoor test environment
Path loss model for pedestrian
test environment
Path loss model for indoor test
environment
Dual-slope LoS propagation
������� 3.2���� Deterministic calculations
����������������� 3.2.1���� BS-to-BS interference
����������������� 3.2.2���� �BS-BS
interference, alternative evaluation
������� 3.3���� Monte Carlo simulation
����������������� 3.3.1���� Capacity consequences of MS-BS, BS-MS, MS-MS
interference in FDD macro/ 3.84 Mchip/s TDD micro scenarios
Environment and propagation models
Performance measures
����������������� 3.3.2���� Consequences of MS-BS and MS-MS interference in
FDD/3.84 Mchips/s TDD, FDD/1.28 Mchip/s TDD scenarios
����������������� 3.3.3���� Outage consequences due to MS-MS interference
in FDD/3.84 Mchip/s TDD scenarios
������� 3.4���� MS-MS (deterministic)
�4���� Calculation examples and results
������� 4.1���� Calculation examples
������� 4.2���� Calculation results
����������������� 4.2.1���� Results from deterministic BS-BS interference
calculation
����������������� 4.2.2���� Results from Monte Carlo simulations
FDD macro � TDD micro
FDD micro � TDD micro
Further studies
����������������� 4.2.3���� Results from deterministic MS-to-MS
interference calculations
�5���� Conclusions
BS-BS: General observations
BS-BS in proximity: WCDMA/3.84 Mchip/s
TDD (see � 4.2.1.1)
BS-BS in proximity: WCDMA/1.28
Mchip/s TDD (see � 4.2.1.3)
BS-BS co-location: WCDMA/3.84
Mchip/s (see � 4.2.1.4)
Solution proposals for BS-BS
interference
MS-BS, BS-MS interference
MS-MS interference
Appendix
1� ACLR, ACS and ACIR
Appendix
2� Derivation of the dual-slope LoS
propagation model
Appendix
3� Practical antenna gain of antennas of
the interfering station and the victim
�1���� Sum of the maximum gains of antennas of the interfering station and the
victim
�2���� Sum of the gains of antennas at the directions of the interfering
station and the victim (vertical antenna pattern defined by the 3 dB and 10 dB
angle)
�3���� Sum of the gains of antennas at the directions of the interfering
station and the victim (vertical antenna pattern modelled with Recommendation
ITU-R F.1336)
Antenna patterns (macro and micro
cells)
Resulting antenna gains
BS characteristics
�