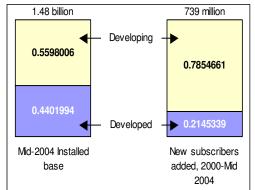
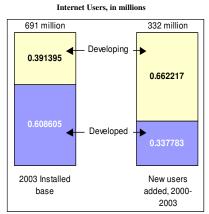


Summary

- 1) Digital Divide problem
- 2) Mobile growth
- 3) Broadband growth
- 4) Broadband Wireless (Mobile and Fixed Wireless Access =>BWA)
- 5) Wired vs BWA
- 6) ITU Sectors and Activities on Mobile and Broadband
- 7) Conclusion


2


Telecommunication Market size and growth

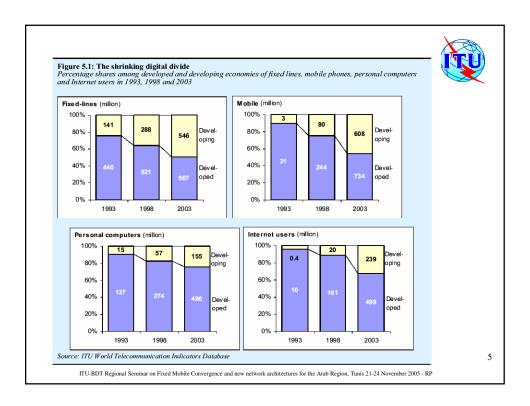
Number of Users and users added in mobile and Internet markets in developed and developing economies, worldwide

Cellular mobile subscribers, in millions

3

 $ITU\text{-}BDT \ Regional \ Seminar \ on \ Fixed \ Mobile \ Convergence \ and \ new \ network \ architectures \ for \ the \ Arab \ Region, \ Tunis \ 21-24 \ November \ 2005 - RP$

1)The digital divide problem

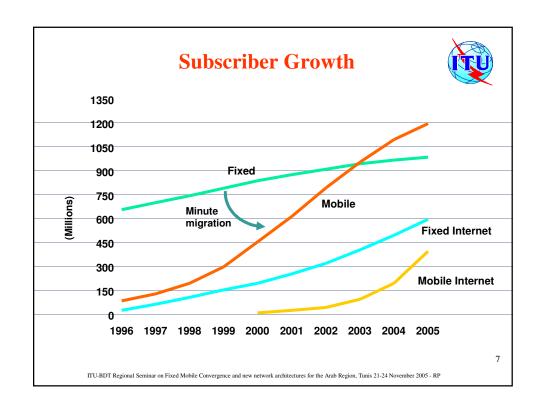

Table 5.1: Where the divides lie

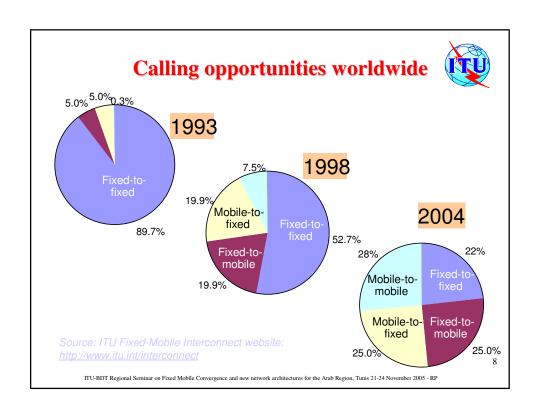
Overview of the main forms of the digital divide affecting individuals and countries

For individuals	For countries			
Socio-economic status	Development stage			
Gender	In fras tructure			
Age, life stage	Public policy			
Language/ethnic status	Skills mix			
Rural/urban location	Size of domestic market			
Skills balance	Location relative to trading partners			

Source: Adapted from "How real is the Internet market in developing nations?" by Madanmohan Rao, at \$\$ http://www.isoc.org/oti.articles/0401/rao.html

4


The digital divide problem



In recent years, as information and communication technologies (ICT) have become the backbone of the global information economy, increasing attention has focused on the gap in access to ICTs between developed and developing countries.

This gap has come to be known as the "digital divide": it is multifaceted, with the gap in access to technologies affecting rural and remote populations, females, children, the elderly, those with health problems and disabilities, ethnic minorities, the illiterate and poorly educated and others both within and between nations.

6

The digital divide problem

Notwithstanding the growth in mobile penetration, Broadband Wireless devices are a long way from being fully deployed in developed, let alone developing areas of the world.

Broadband Wireless could bring access to information and communication to huge numbers of the world's population who are currently without it.

Widening access to basic infrastructure should help to reduce the other forms of divide. In this context, the Broadband Wireless should be seen for the future promise it holds especially in developing countries and in rural and remote areas of the developed world.

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - R

9

Developed versus developing divides

The differences between developed and developing economies can be seen in the level of penetration of different ICT services (telephone, mobile phone, Internet) and of personal computers.

The gap between developed and developing economies has narrowed markedly, with particularly rapid progress in the case of mobile phones and Internet users.

With respect to mobile phones, the number of users in the developing world has grown from just 3 million in 1993 to some 608 million a decade later. In the case of the Internet, the respective numbers are 0.4 and 239 million

10

Developed versus developing divides

Nevertheless, given that the developing world accounts for more than **80 per cent of global population**, there is still along way to go to reduce the divide. Even if national populations were growing at similar rates, and current ICT growth rates were sustained, it would take at least ten years for this gap to be reduced.

But in reality, developing country populations are growing faster than developed ones, and they have a much higher percentage of their population under the age of 15. In reality, therefore, it will take much longer to bridge the digital divide.

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

Developed versus developing divides

Furthermore, given that more than a billion of the world's developing country population lives on less than USD 2 per day, well below the generally accepted minimum level of income needed for ownership and use of ICTs, it is likely that the fundamental nature of the divide will persist unless there is profound change in basic socio-economic conditions.

BROADBAND WIRELESS, TOOL FOR BRIDGING THE DIGITAL DIVIDE: It may help speed up this process, by making ICT access more affordable and easier to deploy.

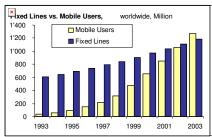
The current shift from circuit-switched to IP-based networks, and from fixed-lines to wireless, associated with the development of the portable Internet, is likely to have a Positive effect, especially given that mobile is overtaking fixed even more decisively in developing countries than in developed ones.

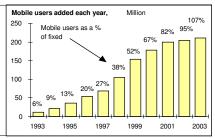
ΠU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

12

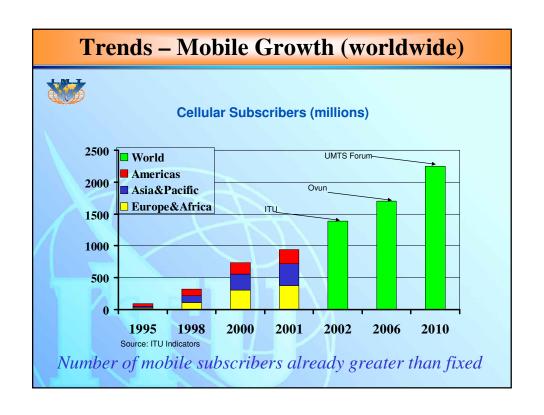
-Mobile Infrastructure

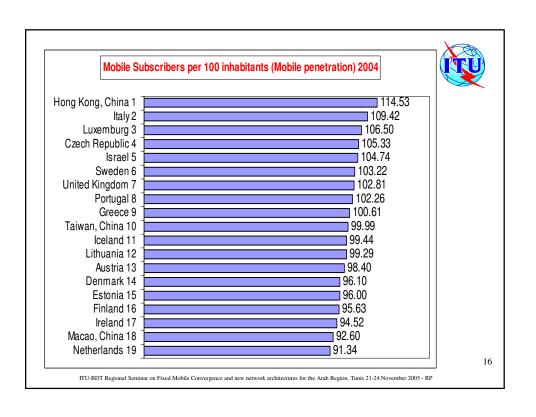
- Fixed Wireless Access (FWA) Infrastructure

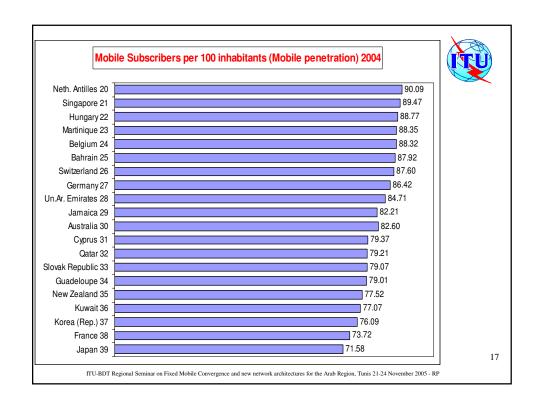

13

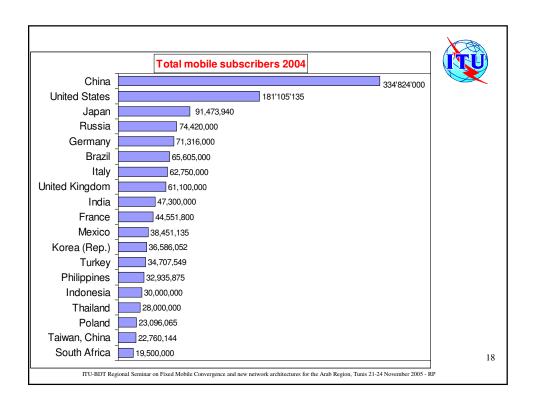

 $ITU-BDT\ Regional\ Seminar\ on\ Fixed\ Mobile\ Convergence\ and\ new\ network\ architectures\ for\ the\ Arab\ Region,\ Tunis\ 21-24\ November\ 2005-RP$

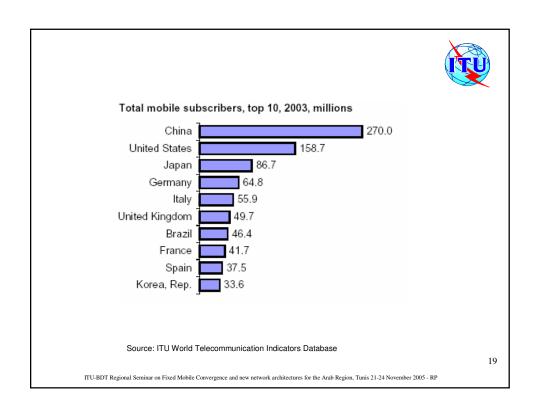
2) The growth of mobile cellular services

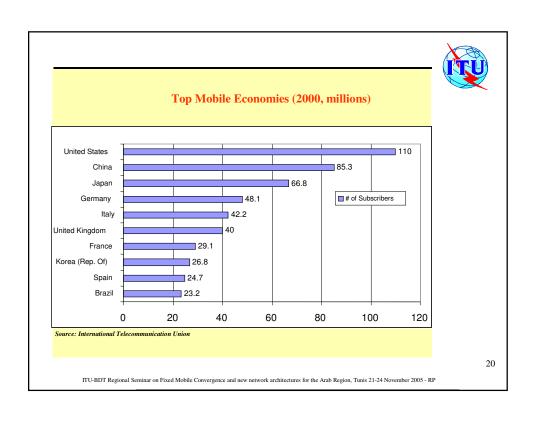

1993-1999 actual, with forecasts to 2003.

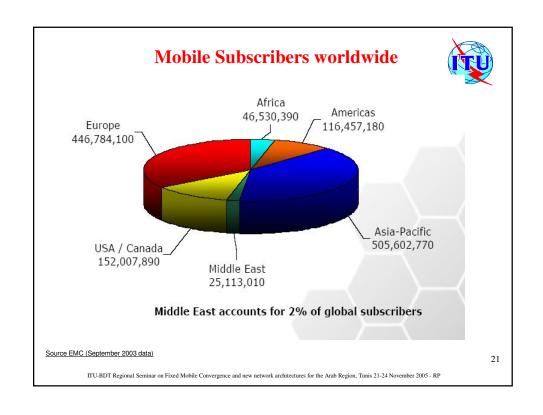


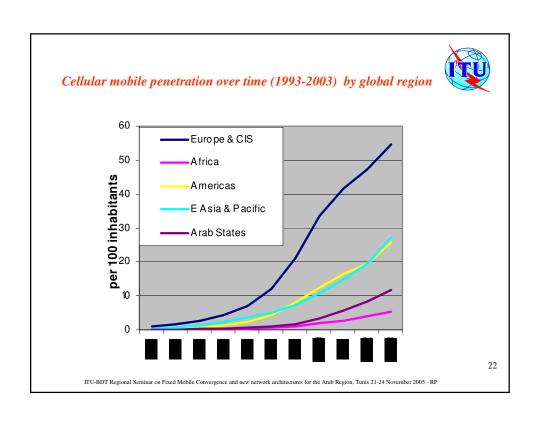


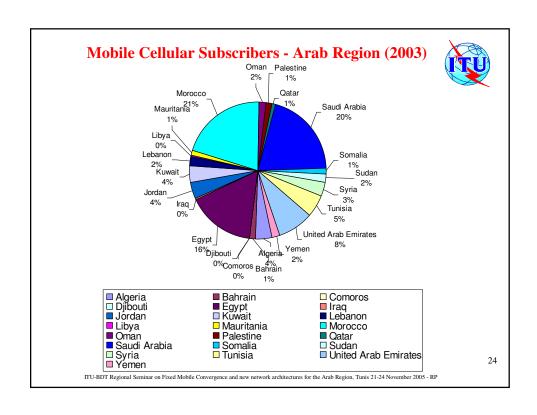

Source: ITU World Telecommunication Indicators Database and ITU forecasts in Trends in Telecommunications Reform, 2000 -2001: Interconnection Regulation .

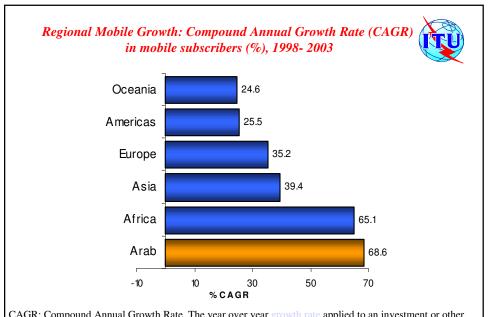

14



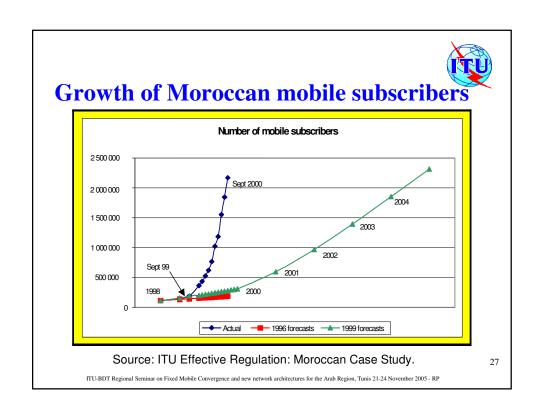


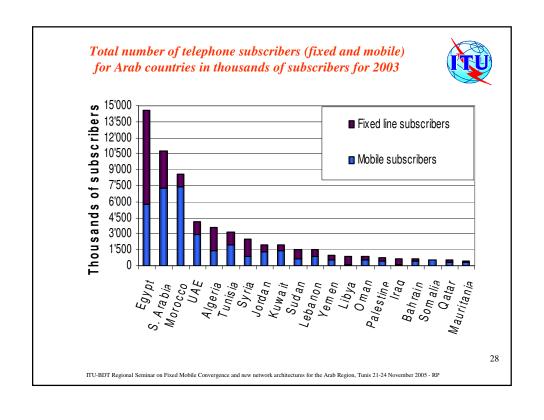


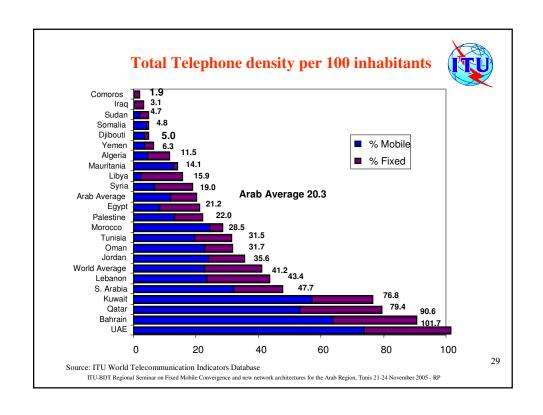



Current Status of Mobile Services in the Middle East

Mobile services in the Middle East represent a good sampling of the present global mobile scene, due to the very wide range of economic and demographic factors throughout the area.


A number of Middle Eastern countries are relatively small, and have high per capita incomes, which has resulted in their early introduction of IMT-2000 technology in the 2 GHz band, while other countries in the region presently have only one mobile operators.

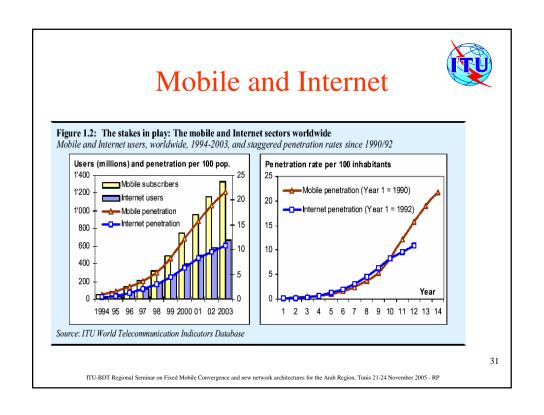


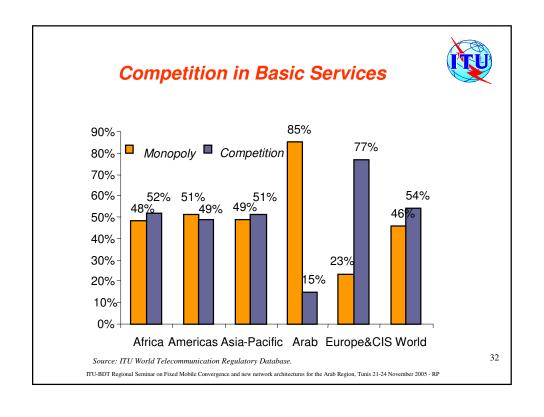


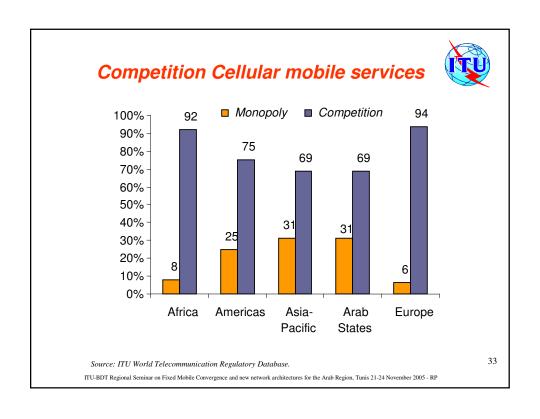
CAGR: Compound Annual Growth Rate. The year over year growth rate applied to an investment or other	
part of a company's activities over a multiple-year period. The formula for calculating CAGR is (Current	
Value/Base Value)^(1/# of years) - 1.	25

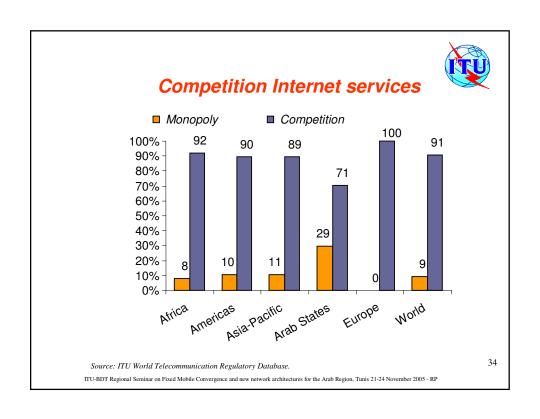
		11.40			lar subscrib	(Jour	As % of total	
				CAGR	Per 100	%	telephone 💢	
			(k)	(%)	inhabitants	Digital	subscribers	
		1998	2003	1998-03	2003	2003	2003	
1 A	Algeria	18.0	1'441.4	140.3	4.54		39.6	
2 B	ahrain	92.1	443.1	36.9	63.84	100.0	70.5	
3 C	omoros	-	2.0	-	0.25		13.1	
4 D	jibout	0.2	23.0	153.4	3.44	100.0	69.3	
5 E	gypt	90.8	5'797.5	129.6	8.45	100.0	39.9	
6 II	aq	-	80.0	-	0.32		10.6	
7 J	ordan	82.4	1'325.3	74.3	24.19	100.0	68.0	
8 K	Luwait	250.0	1'420.0	41.5	57.16	100.0	74.5	
9 L	ebanon	505.3	820.0	10.2	23.43		53.9	
10 L	ibya	20.0	127.0	44.7	2.30		14.5	
11 N	1auritania	-	350.9	-	12.75		90.2	
12 N	Iorocco	116.6	7'359.9	129.1	24.43	100.0	85.8	
13 C	man	103.0	593.5	41.9	22.83	100.0	72.1	
14 P	alestine	100.0	480.0	36.9	13.27		60.3	
15 Q	atar	65.8	376.5	41.8	53.31	100.0	67.1	
16 S	audi Arabia	627.3	7'238.2	63.1	32.11	100.0	67.4	
17 S	omali	-	500.0	-	4.17		86.2	
18 S	udan	8.6	650.0	137.5	1.95		41.9	
19 S	yria	-	1'185.0	-	6.75	100.0	36.1	
20 T	'unisia	39.0	1'947.8	118.7	19.69		62.6	
21 U	Ini. Arab Em.	493.3	2'972.3	43.2	73.57	100.0	72.4	
22 Y	emen	16.1	700.0	112.5	3.47		56.4	
А	rab State	2'628.5	35'833.4	68.6	11.80	80.2	58.1	

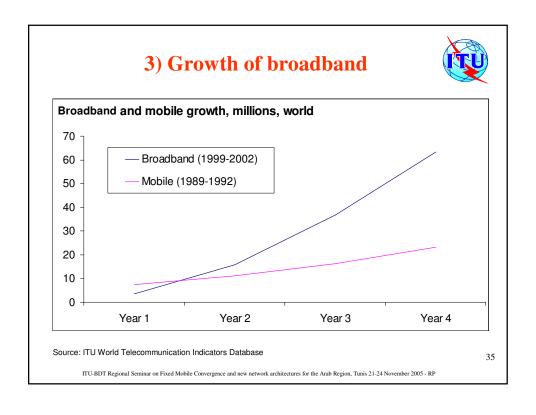
Mobile Market in the Middle East

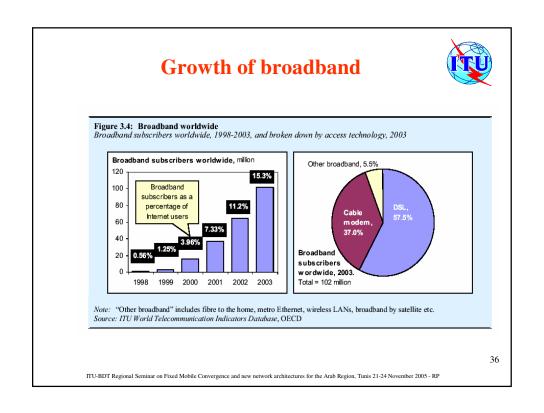

Middle East represents approximately 2% of the global mobile market and a Rapid growth is forecast for the region with a wide range of different market conditions

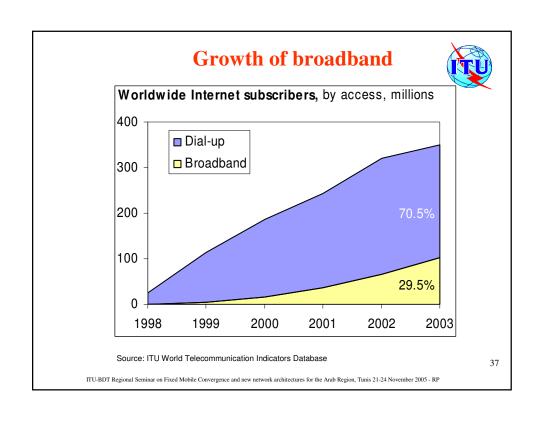

There is generally a higher mobile than fixed penetration in most countries and with the wide acceptance of pre-paid mobile services this trend is rapidly increasing. However, internet penetration levels are quite low, except in the wealthier states such as Bahrain, Kuwait and UAE, and so the development of mobile data services in most countries will be quite slow, and therefore voice services will be the primary source of operator revenue for many years.

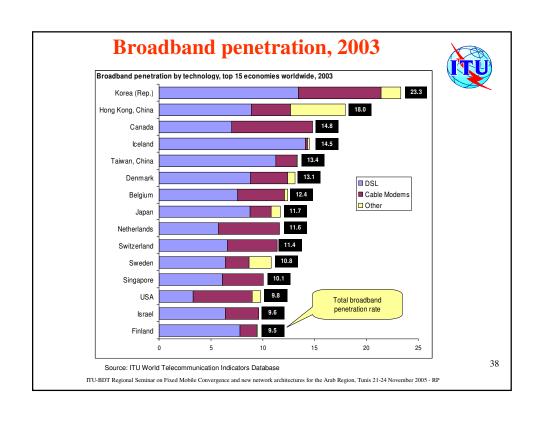

A number of the countries with low mobile penetration levels have recently awarded a second mobile operator license, e.g. Saudi Arabia and Oman, or are planning to license a second operator, e.g. Iran, which will clearly result in a rapid increase in mobile users in these countries. Oman currently has a mobile penetration of over 25% and Oman Mobile offers GSM/GPRS services throughout Oman. A second GSM operator (Nawras) started service on March 16th 2005.

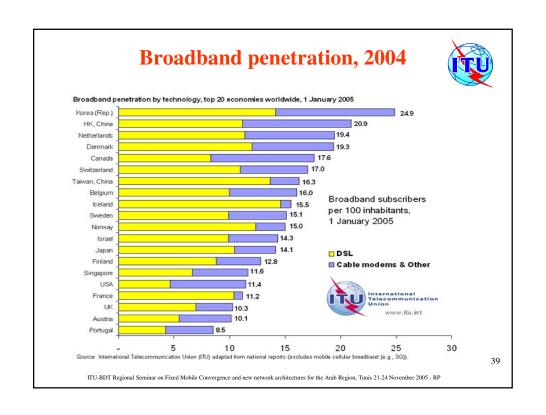

Operators in both Bahrain and UAE have recently launched UMTS (IMT-DS), and Multi-media Messaging Services (MMS), based largely on GPRS and eventually also on EDGE are available in a number of Middle Eastern countries.

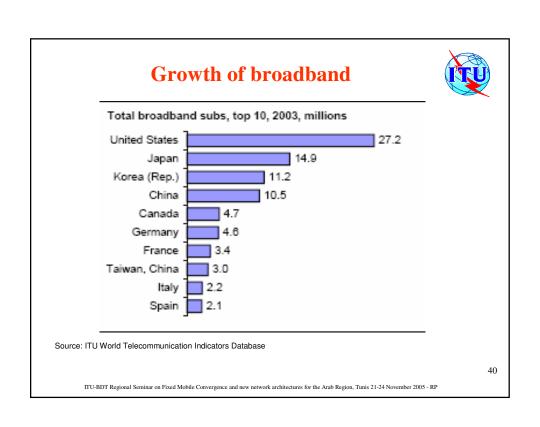

Tru-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24-November 2005 - RP

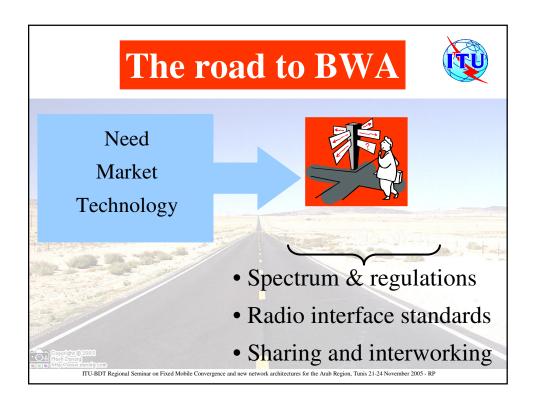


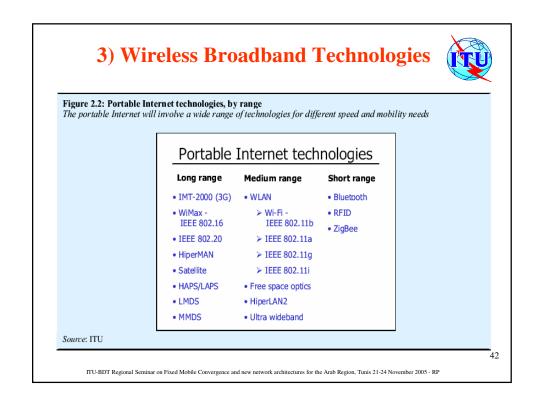


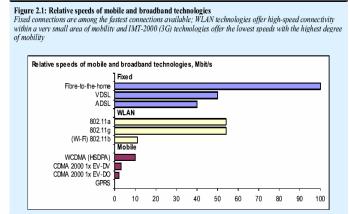












43

 $ITU-BDT\ Regional\ Seminar\ on\ Fixed\ Mobile\ Convergence\ and\ new\ network\ architectures\ for\ the\ Arab\ Region,\ Tunis\ 21-24\ November\ 2005-RP$

3a) Deploying Wireless Broadband infrastructure

Technologies for narrowing the gap: IMT-2000

Source: ITU

Existing 2G and 2.5G cellular networks provide a platform for slow-speed and medium-speed Internet access, as well as for voice. But for higher speeds, advanced wireless technologies and techniques provide a platform for high-speed data access using Internet Protocol (IP).

For developing economies, one of the most promising technologies may be WiMAX (IEEE 802.16), which offers high-speed connectivity over a range of up to 50 kilometres

44

Cellular mobile: IMT-2000 or third-generation (3G) mobile technologies

The number of mobile phone users in the world overtook the total number of fixed line subscribers in 2002.

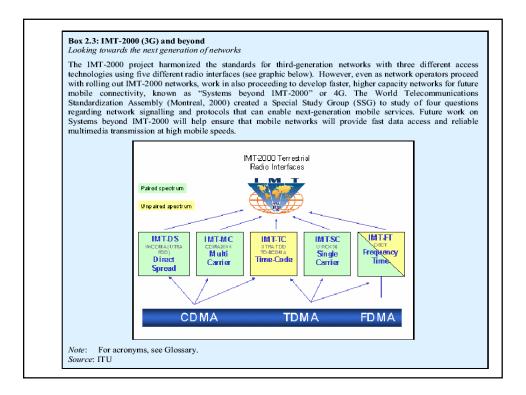
With this tremendous growth of mobile communications comes the possibility that the world's vast mobile networks can offer the most promising method of delivering the portable Internet to users.

The great majority of the world is still using second-generation mobile networks, but IMT-2000 (3G) networks have begun to make their impact: there were 118 million 3G users in the world by mid-2004.

45

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RF

IMT-2000 or third-generation (3G) mobile technologies



In terms of Internet access, the data speeds for 2G networks were too slow to allow efficient connectivity for mobile phones.

In addition, a large number of inoperable mobile standards has made universal roaming throughout the world impossible. With these two issues in mind, the ITU started work on a new, global standard for third generation mobile communication.

This work culminated in the development of the IMT-2000 "International Mobile Telecommunications-2000" standard.

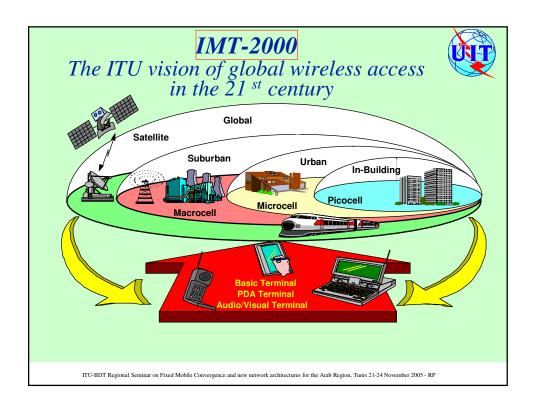
46

IMT-2000 Mobile technologies

IMT-2000: International Mobile Telecommunications-2000 for Data & Multimedia Services, set of globally harmonized standards for third generation wireless communications (3G)

They will provide access, any time and anywhere, by means of one or more radio links, to a wide range of telecommunications services supported by the fixed telecommunication networks (e.g. PSTN/ISDN/IP), and to other services which are specific to mobile users.

A range of mobile terminal types is encompassed, linking to terrestrial and/or satellite based networks, and the terminals may be designed for mobile or fixed use.


48

IMT-2000 Will provide

- Simultaneous transfer of speech, data, text, pictures, audio and video
- High-speed, mobile access to Internet
- Entertainment on demand (movies, Music..)
- Video-conferencing
- Mobile-commerce
- Travel information (roads, flights, trains,...)

49

3b) Technologies for narrowing the gap: Fixed Wireless Access (FWA)

IMT-2000 technologies will cover the highly mobile but lower speed portions of the portable Internet while fixed wireless technology will fill the niche of highspeed, long distance, but stationary connectivity.

However, fixed wireless connections are currently being promoted as replacements for wired broadband connections.

The key role of fixed wireless technologies in the portable Internet will probably remain as a cost-effective high-speed backhaul connection to a city, village, or even a community access centre.

51

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

Technologies for narrowing the gap: Fixed Wireless Access (FWA)

Fixed wireless systems have been slow to gain ground when compared with traditional, wired high-speed connections.

However, a new set of technologies is promising to change wireless adoption the same way Wi-Fi has changed localized Internet access. Two promising new developments, WiMAX, IEEE 802.16 and IEEE 802.20 are competing to become the new standard for fixed wireless.

In fact, both are promising something that previous fixed wireless technologies have not allowed, that is to say mobility (Regulatory aspect, Technical aspects).

52

Technologies for narrowing the gap: Fixed Wireless Access

In addition to the wide geographical range, **WiMAX also promises to be relatively quick, easy and cheap to install.** A particular advantage with WiMAX is that the main investment burden falls on users rather than network or service providers, or the government.

Start-up costs are thus much lower and investment burden is more widely shared. WiMAX networks are characterised by relatively low sunk costs and networks can grow "organically", as more users join the network. The spectrum costs for WiMAX are also likely to be much lower than for IMT-2000.

53

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

Fixed-wireless as a formula for low-cost Internet access

Fixed Wireless Access is and option that can ensure greater user affordability, particularly by virtue of low-cost installation and roll-out, and the use of licence-exempt frequencies.

Fixed wireless systems use a small, inexpensive microwave antenna that is attached to a local radio network at the customer premises and their provision costs are far less than digging up the earth to install copper-based cables. They can be employed as an efficient and cost-effective method for bypassing the last-mile of the existing telecommunication network.

54

They are also cheaper to install in countries with rugged terrain—as long as line of sight is available. Along with low-cost equipment and installation, the relative lack of regulation over the supply of fixed wireless also presents a considerable cost advantage.

However, for developing countries in particular, the potential loss of revenues received by the incumbent operator and resulting loss of taxes, is an issue that needs to be taken into consideration.

Fixed wireless systems have been deployed in a number of countries, each addressing particular needs and requirements

55

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

WLAN (Wireless Local Area Networks)

Fixed-line broadband connections offer the fastest speeds but are confined to wired connections.

However, a subset of wireless technologies, WLANs, is expanding the reach of broadband in the **100-metre range**.

The WLAN market is currently dominated by one technological standard, IEEE 802.11b (commonly known as Wi-Fi), though several new variations are quickly gaining popularity.

56

WLAN (Wireless Local Area Networks)

Table 2.1: Wi-Fi ranges

The various ranges of Wi-Fi in different environments

	Range			
Environment	Maximum	at 11Mbit/s		
Outdoors / open space with standard antenna	225-300 m	45-100 m		
Office / light industrial setting	75 - 100 m	30-45 m		
Residentialsetting	40-60 m	20-25 m		

Source: The Wi-Fi Alliance at: http://www.weca.net

57

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

WLAN (Wireless Local Area Networks)

While medium-range technologies offer higher bandwidth it comes at a cost, reduced mobility. Medium range technologies are often given the name "portable" rather than "mobile" since they are essentially a fixed connection that can be transported.

Medium-range connections can be used within a large radius of a transmitter, making the connection portable. However, the ability to easily maintain a connection while moving (mobile) has been elusive

58

Wi-Fi: Cheap, unregulated and unlicensed broadband

The advantages of **Wi-Fi for increasing wireless access** include the fact that it can be built from the bottom up, **by small and local entrepreneurs.** Each telecommunication operator can provide services within the local community simply **by purchasing the basic radio equipment and transmitting on these unlicensed frequencies.**

The model is relatively inexpensive, responsive to local needs and realities, able to grow organically and fully scalable. It can also create employment, especially where the provision of Wi-Fi service is combined with sale of other services (e.g. mobile prepaid recharges, photocopying, etc.). As the number of local providers increases, so does the overall capacity of the network. Each new operator increases the number of pathways between any two points.

59

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

Wi-Fi: Cheap, unregulated and unlicensed broadband

However, there are a number of constraints with WLANs, most notably the small cell size, which may not be appropriate in rural areas. Furthermore, while WLANs may be cheap to roll-out, installing and operating conditional access and billing systems may be more expensive.

For these reasons, it is more likely that WLANs would be used in developing countries not as a standalone service, but in conjunction with another technology, like WiMAX, DSL or Very Small Aperture Terminals (VSATs).

60

4) Wired vs Wireless Broadband technologies

- At the present time, wired broadband technologies can transport much more data than wireless technologies.
- Fibre optic technologies are currently capable of 10 Gbit/s over one wavelength, and fibre should be able to support multiple wavelengths.
- Wireless technologies, available to consumers, have recently been shown to reach 54 Mbit/s but only over short distances, and still with nearly 200 times less bandwidth than a single fibre strand.

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RI

61

Wired vs Wireless Broadband technologies

The vastly superior speeds of <u>wired connections</u> mean they will continue to play a key role in providing high-bandwidth applications. Wired connections, where they are available, will be a vital element for high volume and low-cost data transportation.

For the foreseeable future, wired and wireless technologies are likely to be complementary, at least in the urban markets of the developed world

On the other hand, wireless technologies may offer an effective way for countries without extensive fixed-line infrastructure to catch up, and possibly "leapfrog" over other countries in terms of total connectivity.

62

Wired vs Wireless Broadband technologies

Residences subscribe to broadband via a fixed connection but then share the connection within the house or apartment via Wi-Fi. Businesses using WLANs almost always rely on wired infrastructure to reach their ISP.

Therefore, instead of Wi-Fi competing against fixedline broadband infrastructure, the two work together as complementary technologies. Fixed broadband connections become more cost effective and attractive to users when they can be shared and Wi-Fi makes this possible.

63

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

Wired vs Wireless Broadband technologies

The second area of possible competition of newer portable Internet technologies is **with third generation (3G or IMT-2000) mobile.** As of mid 2004, there were around 118 million 3G subscribers worldwide (compared with around 58 million a year earlier).

Some of the functionality that 3G offers is very similar to that which could be potentially offered by Broadband technologies, though 3G may still be preferred for use in fast moving vehicles.

Furthermore, although 3G may offer better coverage, the start-up costs of providing nationwide coverage for 3G are likely to be much higher than a hybrid Broadband Wireless solution based on a WiMAX backbone and a Wi-Fi local loop. The main difference affecting the cost is the size of cells (much smaller for 3G than for WiMAX) and the requirement for cell-handover in a 3G network.

64

Wired vs Wireless Broadband technologies

The high costs of acquiring licences and rolling out the network are part of the reason why 3G has been slow to arrive

But the main area of competition relates to tariff structures (see pricing discussion below). Mobile operators approach the provision of Internet services from the starting point of per-minute voice tariffs, whereas Wireless Internet service providers approach it from the starting point of "always-on", flat-rate Internet tariffs. In any like-for-like competition, flat-rate tariffs are always likely to be preferred in the marketplace over per-minute pricing strategies.

This is one of the reasons why 3G service providers, notably in Japan are moving towards flat-rate tariffs.

65

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

ITU Structure of Sectors

ITU-T
Networking/Standards

ITU-R

Radiocommunications

ITU-D

Development

ITU-D manages two study groups:

- These groups serve as a forum for developing and developed countries and public
 and private sector organizations to meet with the purpose of devising innovative
 solutions which address specific problem areas as identified by the World
 Telecommunication Development Conference (WTDC-02 Istanbul).
 - Study Group 1: Telecommunication development strategies and policies (regulatory)
 - 2. Study Group 2: Development and management of telecommunication services and networks (technical)

66

ITU-D: World Telecommunication Development Conference (WTDC)

- normally held every four years: WTDC 2002 in Istanbul, next WTDC in 2006
- fix objectives and strategies for worldwide and regional development of telecommunications
 - priority to expansion and modernization of networks and mobilization of resources to boost telecommunication penetration and access in the world's poorer countries.
- review progress made in telecommunication development in developing countries
- promote the international cooperation
- provide direction to BDT
- establish ITU-D study groups

67

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

ITU-D Study Groups

- ITU-D not involved in technical standardization so manages only two study groups
 - serve as forum for developing and developed countries, and public and private sector organizations to meet
 - purpose: devise innovative solutions to address specific problem areas as identified by WTDC
- study focus: telecommunications development strategies
- SG 1 Telecommunication development strategies and policies
- SG 2 Development and management of telecommunication services and networks

68

Results of WTDC-02 related to IMT-2000

The recent ITU World Telecommunication Development Conference WTDC-02 (Istanbul, 18-27 March 2002), approved the following texts related to IMT-2000:

- **Resolution 43** (WTDC-02): Assistance for implementing IMT-2000
- **-Question 18/2**: Strategy for migration of mobile networks to IMT-2000 and beyond
- -Programme 2, point 1.4: Mobile terrestrial communications

69

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RI

Guidelines on a Smooth Transition from 2G to IMT-2000 for Developing Countries

- •From 2G to 3G: Special needs of Operators, Regulators and Users in developing Countries
- Spectrum Requirements and Licensing Aspects
- Transition Paths
- •Economics of Transition to IMT-2000
- Business Plan and Analysis
- Operator Experience in Transitioning to IMT-2000 System

'n

Programme 2: 1.4 Mobile terrestrial communications

Mobile communications tended to be developed and implemented at the national or regional level, with little thought for global interconnection. The result is a wide range of technical standards which use many parts of the radio-frequency spectrum - analogue and digital cellular phones, pagers, cordless telephones, mobile data systems, wireless local area networks and the new breed of satellitebased mobile telephones, to name just a few. Incumbent mobile operators do not want to have to discard their entire existing infrastructure; rather, they prefer a new system, which can coexist and interoperate with the present one and act as an adjunct to it. Therefore, because of both the explosive growth of second-generation mobile systems, network development and migration to thirdgeneration networks (IMT-2000) and beyond, high priority will be accorded to mobile communications within this programme. Information will be also provided on mobile systems operating below 600 MHz, which are of particular interest to some developing

71

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

countries."

ITU-BDT Broadband Activities

72

Developing Regions

- Growing demand for Broadband
- •Lack of Wireline infrastructure needed to meet the growing demand for Broadband
- •BWA, economical and easy to install, is a good high-performance solution to address the needs of these Regions
- Availability of Broadband Services in Rural and Remote areas can address a variety of challenges posed by the distance

73

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

ITU-D Broadband Activities Presentation Agenda

- ITU-D Introduction
- Question 20-1/2: Broadband Access Technology
- Results of Questionnaire: Factors affecting broadband deployment
- Strategies to Promote Broadband
- Invitation to Participate

74

ITU-D Study Group 2 Question 20-1/2 Broadband Access Technologies

•Approved at World Telecommunications Development Conference 2002:

-Identify the technical, economic, and development factors influencing the effective deployment of broadband access technologies and applications.

•Technology Scope:

-All broadband technologies- as inclusive as contributions permit.

•Draft Report (finalized July 2005) currently available on ITU-D website:

3 sections: 1) General broadband matters; 2) Technology Matrices, 3)
 Country experiences

-General broadband matters:

- •Social and Economic Benefits of Broadband
- •Broadband Applications
- •Broadband Deployment
- •Strategies to Promote Broadband Development

-Technology Descriptions:

- •Wireline: DSL, Cable, Fiber to the Home, Powerline, etc
- •Wireless: Satellite, FWA, WLAN, IMT-2000, etc.
- •Non-Standardized Technologies

75

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

Broadband Questionnaire Sent March 2003

• Questionnaire Aims:

- Identify relevant wireless and wireline broadband access technologies and their attributes.
- Identify economic, technical and development factors influencing deployment and accessibility of broadband.
- Look at pricing trends for broadband access.

• Responses:

- 58 Respondents from 52 countries from all ITU regions
- American respondents include Barbados, Bolivia, Brazil, Canada, Chile, Costa Rica, Dominican Republic, Ecuador, Guyana, Honduras and Peru
- Analyzed by ITU-D Secretariat External Consultant

76

Main Findings of Broadband Questionnaire (1/2)

- No regionally dominant broadband technology.
- DSL is dominant wireline broadband technology, followed by cable and E1/T1.
- Satellite, fixed wireless, WLAN and IMT-2000 are leading wireless broadband technologies.
- Fastest growing broadband platform identified as wireless.
- Business applications are the main adoption drivers though personal use was a close secondary driver in both developed and developing countries.
- Huge differences exist between developed and developing nations in access to broadband services; even more pronounced in rural areas.
- Gender barriers to broadband exist mainly in lack of training and economic resources.
- The majority of respondent countries do not provide loans or support to enable broadband deployment.
- Many countries offer free broadband access through public centers.

77

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

Main Findings of Broadband Questionnaire (2/2)

- Price for broadband access on average 5 times higher in Africa than in Europe.
- Deployment costs followed by lack of demand for broadband services were identified as two largest barriers to broadband deployment.
- Of issues limiting spread of broadband, the most common was that the monthly fee was too high.
 - Other factors identified were insufficient demand to justify infrastructure costs, high installation costs and lack of access to personal computers.
- Lack of awareness is another factor limiting broadband deployment.
- Lack of regulatory framework conducive to network build out also negatively affects broadband deployment.
- Those countries w/ large rural areas and dispersed rural populations are among those facing the greatest difficulties in raising finances for broadband build-out.

78

Conclusions: Strategies to Promote Broadband (1/2)

In order to promote demand for broadband deployment, governments and businesses private sector can aim to:

- Increase broadband availability in schools, and other public centers (increases awareness of broadband benefits).
- Educate users on successful applications such as IP telephony, video chat, audio over broadband.
- Promote teleworking, e-health, e-learning, and e-government transactions (such as filing of tax forms and other administrative procedures).
- Encourage content development in local languages.
- Ensure regulatory environment protects intellectual property rights and user security.
- A competitive market structure is vital to sustain low prices in order to attract consumers.
- Support for research and development on broadband technologies and applications.

79

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

Conclusions: Strategies to Promote Broadband (2/2)

In order to promote broadband supply, governments and businesses can aim to:

- Create incentives for competition both among providers of the same broadband technologies, and between providers of different broadband technologies.
- Establish policies that allow service providers the flexibility to independently choose technologies based on commercial and competitive considerations.
- Promote use of existing infrastructure to enable broadband rollout while at the same time encouraging new investment
- Utilize schools, hospitals, and community access centers as effective anchors for broadband demand in areas where individual household connections are not yet viable.
- Consider wireless broadband as a viable community alternative to fixed line solutions such as broadband via DSL or cable modem.
- Participate at all levels: national, regional and city-wide initiatives and community participation projects have been successful in expanding access.
- Particularly for rural and underserved areas, consider potential economic incentives for broadband build-out such as tax credits, grants for community planning efforts, subsidized or low-interest loans.

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

80

The concept of Universal Service in the EU

A safety net

- for those whose financial resources or geographical location do not allow them to have the basic services that are already available to, and used by, the great majority of citizens.

81

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

The Current Scope of Universal Service

- Connection to the public telephone network at a fixed location
 - capable of supplying functional Internet access, taking into account prevailing technologies used by majority of subscribers and technological feasibility
- Access to publicly available telephone services
- Directories and directory enquiry services, public pay telephones, special measures for disabled users

82

Test for possible inclusion of mobile

Recital 25 & Annex V of US Directive

• are **mobile** services available to, and used by, a majority of consumers ?

YES

 does the lack of availability or non-use by a minority of consumers result in social exclusion for those that cannot afford them?

NO

83

 $ITU\text{-}BDT \ Regional \ Seminar \ on \ Fixed \ Mobile \ Convergence \ and \ new \ network \ architectures \ for \ the \ Arab \ Region, \ Tunis \ 21-24 \ November \ 2005 - RP$

Conclusion on mobile

"The competitive provision of mobile communications has resulted in consumers already having widespread affordable access to mobile communications.

The conditions for including mobile communications within the scope of universal service are therefore not fulfilled."

84

Test for possible inclusion of broadband

Recital 25 & Annex V of US Directive

• are **broadband** services available to, and used by, a majority of consumers ?

NO

85

ITU-BDT Regional Seminar on Fixed Mobile Convergence and new network architectures for the Arab Region, Tunis 21-24 November 2005 - RP

Conclusion

 Considering that both Mobile and Broadband can bridge the digital divide such conclusions should be carefully re-considered in the case of Developing Countries

86