

Agenda

- Wireless Metropolitan Area Networks
- IEEE 802.16 Working Group
- Global Standards Harmonization
- WiMAX Forum & Interoperability
- IEEE 802.16 Air Interface Standard

Importance of Global Standards for Broadband Wireless Access Systems

- Reduced costs due to mass production
- Reduced operator risk
- Opportunities for roaming
- Stimulate adoption of technology
- Platform for technical innovation
- Global standards benefit the <u>users</u> and the <u>producers</u>.

IEEE Standards for Broadband Wireless Access Systems

- Institute of Electrical and Electronics Engineers (IEEE)
 - Global, open process
 - Worldwide participation
 - Producing international standards
- IEEE 802.11™ (short-range: ~100 m):
 - Wireless Local Area Networks
 - Often called "Wi-Fi" for "Wi-Fi Alliance"
- IEEE 802.16 ™ (long-range: ~10 km):
 - Wireless <u>Metropolitan</u> Area Networks
 - Often called "WiMAX" for "WiMAX Forum"
 - or "WiBro" for "Wireless Broadband"

Properties of IEEE Standard 802.16™

- Broadband
 - Up to ~100 Mbit/s (in principle, at PHY, in 28 MHz channel)
- Supports multiple services simultaneously with full QoS
 - Efficiently transport IPv4, IPv6, ATM, Ethernet, etc.
- Bandwidth on demand (frame by frame)
- MAC designed for efficient use of spectrum
- Comprehensive, modern, and extensible security
- Supports multiple frequency allocations up to 66 GHz
 - ODFM and OFDMA for non-line-of-sight applications
- ■TDD and FDD
- Link adaptation: Adaptive modulation and coding
 - Subscriber by subscriber, burst by burst, uplink and downlink
- Point-to-multipoint topology, with mesh extensions
- Support for adaptive antennas, space-time coding, MIMO
- ■Extensions to mobility (nearly finished 802.16e)
- An element of 4G wireless.

802.16 Membership

- 261 Members (individuals)
 - Australia, Belgium, Brazil, Canada, China, Finland, France, Germany, Greece, Hong Kong, India, Ireland, Israel, Italy, Japan, Korea, Netherlands, Norway, Pakistan, Russia, Singapore, Spain, Sweden, Taiwan, UK, USA
 - plus >100 "Potential Members"
 - plus 85 official Observers
- Regional coordination
 - Europe (ETSI), Korea (TTA), China (CCSA)
- International coordination with ITU

IEEE 802.16 History

- Project development & acceptance: 1998-1999
- Meet every two months since 1999:

• #1: July 1999	Montreal	Canada	130 people
#29/Jan 2004#30/Mar 2004#31/May 2004	Vancouver Orlando Shenzhen	USA China	131 222 228
#32/Jul 2004#33/Sep 2004	Portland	USA	332
	Seoul	Korea	287
#34/Nov 2004#35/Jan 2005	S. Antonio	USA	367
	Sanya	China	313
#36/Mar 2005#37/May 2005	Atlanta	USA	340
	Sorrento	Italy	~250

802.16 and ETSI

- Over 50 liaison letters between 802.16 and ETSI
 - (European Telecom Standards Institute)
- ETSI HIPERMAN
 - Below 11 GHz
 - IEEE began first
 - Healthy cooperation
 - Harmonized with 802.16 OFDM
- Cooperation on conformance tests

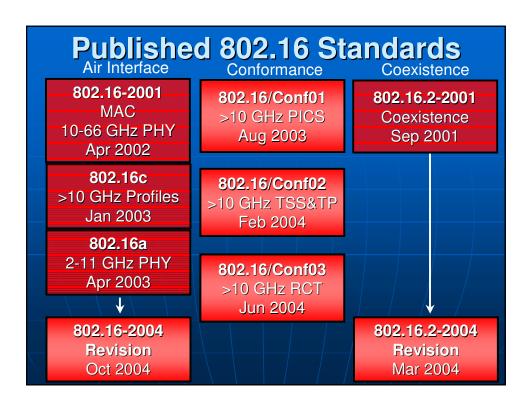
802.16 and Korea

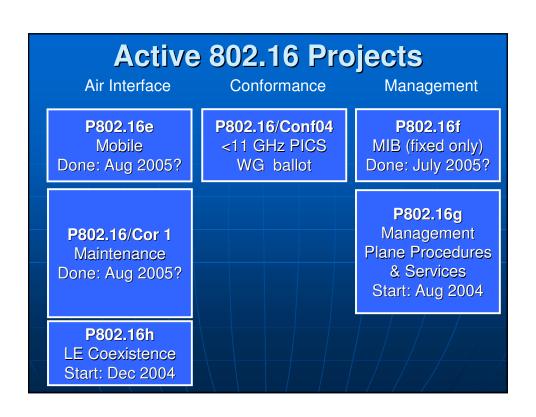
- Several liaison letters between 802.16 and TTA (Telecommunication Technology Association)
- Korean Ministry of Information and Communication announced (29 July 2004) that Portable Internet Service (WiBro) using the 2.3 GHz spectrum "must comply with IEEE 802.16-2004 and IEEE 802.16e/Draft3 or later versions."

IEEE-SA, 802.16, & China

- Several meetings with leaders of Ministry of Information Industry and China Communications Standards Association (CCSA)
- 802.16 Liaison contacts with CCSA

802.16 and ITU


- ITU-T:
 - SG15: network access technologies
 - Liaison letters
 - SG9: cable television networks
 - Liaison letters
 - PDNR underway: broadband wireless extensions
 - 802.16 invited to contribute; 802.16 referenced
- ITU-R:
 - WP 9B: fixed wireless access
 - Liaison exchanges
 - DNR: broadband wireless recommendations
 - Based on 802.16's invited input
 - Approval expected in September 2005
 - WP 8A and 8F: recent activities

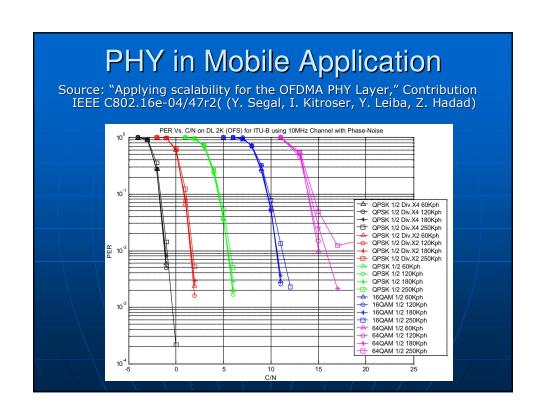

WiMAX Forum

- WiMAX: Worldwide Interoperability for Microwave Access
- Mission: To promote deployment of BWA by using a global standard and certifying interoperability of products and technologies.
- ~245 Member companies
 - Support IEEE 802.16 standard
 - Propose and promote access profiles for IEEE 802.16
 - Certify interoperability levels both in network and the cell
 - Achieve global acceptance
 - Promote use of broadband wireless access overall

IEEE Standard 802.16: WirelessMAN™ Air Interface

Technical Overview

Point-to-Multipoint Wireless MAN: not a LAN


- Base Station (BS) connected to public networks
- BS serves Subscriber Stations (SSs)
- Provide SS with first-mile access to networks
 - SS can serve a building (business or residence)
 - SS can serve an 802.11 Wireless LAN access point
 - SS can serve a PDA, etc.
- Compared to a Wireless LAN:
 - Multimedia QoS, not only contention-based
 - Many more users
 - Much higher data rates
 - Much longer distances

802.16 MAC: Overview

- Point-to-Multipoint Metropolitan Area Network
- Connection-oriented
- Supports difficult user environments
 - High bandwidth, hundreds of users per channel
 - · Continuous and burst traffic
 - Very efficient use of spectrum
- Protocol-Independent core (ATM, IP, Ethernet, ...)
- Balances between stability of contentionless and efficiency of contention-based operation
- Flexible QoS offerings
 - CBR, rt-VBR, nrt-VBR, BE, with granularity within classes
- Supports multiple 802.16 PHYs (SC, OFDM, OFDMA)
- ARQ/HARQ for link reliability
- Adaptive Antenna System (AAS) and MIMO support
- Dynamic Frequency Selection (DFS) (license-exempt)

Multiple Access and Duplexing

- On DL, SS addressed in TDM stream
- On UL, SS allotted a variable length TDMA slot
- Time-Division Duplex (TDD)
 - DL & UL time-share the same RF channel
 - Dynamic asymmetry
 - SS does not transmit/receive simultaneously (low cost)
- Frequency-Division Duplex (FDD)
 - Downlink & Uplink on separate RF channels
 - Static asymmetry
 - Half-duplex SSs supported
 - SS does not transmit/receive simultaneously (low cost)

- 802.16 Summary

 The IEEE 802.16 WirelessMAN Air Interface, addresses worldwide needs
- The 802.16 Air Interface provides great opportunities for vendor differentiation, particularly at the base station, without compromising interoperability.
- The air interface is suitable for mobile subscriber stations, and enhancements for mobile use are nearly complete.
- Standardized network management functions will be defined.
- Compliance tests will be defined.

Free IEEE 802 Standards & Info

- Since May 2001, IEEE 802 standards have been available for free download, beginning six months after publication.
- See:

http://WirelessMAN.org

- You will find:
 - IEEE Std 802.16-2004
 - IEEE Std 802.16.2-2004
 - IEEE Std 802.16/Conformance 01, 02, & 03
 - · Documents, tutorials, email lists

